The test consists of 2 pages. Justify your work when necessary.
(1) Find a simplifying expression for the following sets. Here \mathcal{U} is the universe, A and B are two sets such that $B \subseteq A$.
a) $A \cup \emptyset$
b) $A \cup \cup$
c) $A-u$
d) $A \oplus A$
e) $\emptyset-A$
f) $A \cap B$
g) $A \cup B$
h) $\bar{A} \cap B$
i) $A \oplus B$
j) $\mathcal{P}(\emptyset)$
(2) Using only p, q, r, \neg and/or the connective \wedge, write a proposition equivalent to each of the following
(a) $(p \rightarrow q) \rightarrow r$
(b) $p \rightarrow(q \rightarrow r)$
(3) Write the contrapositive and converse of the statement: "You sleep late if it is Saturday".
(4) In the following, $P(x, y)$ means " $x+2 y=x y$ ". Where x and y are integers. Determine the truth value of the statement.
(a) $\mathbf{T} \quad \mathbf{F} \quad \exists y P(x, 3)$
(b) $\mathbf{T} \quad \mathbf{F} \quad \forall x \exists y P(x, y)$
(c) $\mathbf{T} \mathbf{F} \quad \exists x \forall y P(x, y)$
(5) Suppose the variable x represents students and the variable y represents courses, and $A(y): y$ is an advanced course $S(x): x$ is a sophomore $F(x): x$ is a freshman $T(x, y): x$ is taking y. Write the following statements using these predicates and any needed quantifiers.
(a) There is a course that every freshman is taking.
(b) No freshman is a sophomore.
(c) Some freshman is taking an advanced course.
(d) There are at least two freshman students taking the exact same courses.
(6) Determine whether the following argument is valid.
$p \rightarrow r$
$q \rightarrow r$
$\frac{\neg(p \vee q)}{\therefore \neg r}$
(7) Determine whether the following argument is valid.

She is a Math Major or a Computer Science Major.
If she does not know discrete math, she is not a Math Major.
If she knows discrete math, she is smart.
She is not a Computer Science Major.
Therefore, she is smart.
(8) Determine whether the rule describes a function. If your answer is no say why.
(a) $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n)=\sqrt{n}$.
(b) $g: \mathbb{N} \rightarrow \mathbb{N}$ where $g(n)=$ any integer $>n$.
(9) Give an example of a function from \mathbb{Z} to \mathbb{N} that is both one-to-one and onto.
(10) Give an example of a function from \mathbb{Z} to \mathbb{N} that is onto but NOT one-to-one.
(11) Let $f: A \rightarrow B$. Let $B^{\prime} \subset B$. Show that $f\left(f^{-1}\left(B^{\prime}\right)\right) \subseteq B^{\prime}$. WHAT condition is needed for the containment in the other direction?

