MATH 211 EXAM ONE Fall 2005 September 29

Name:

The test consists of 2 pages. Justify your work when necessary.

(1) Find a simplifying expression for the following sets. Here \mathcal{U} is the universe, A and B are two sets such that $B \subseteq A$.

a) $A \cup \emptyset$	b) $A \cup \mathcal{U}$
c) $A - \mathcal{U}$	d) $A \oplus A$
e) $\emptyset - A$	f) $A \cap B$
g) $A \cup B$	h) $\overline{A} \cap B$
i) $A \oplus B$	j) $\mathcal{P}(\emptyset)$

(2) Using only p, q, r, \neg and/or the connective \land , write a proposition equivalent to each of the following

```
(a) (p \to q) \to r
```

(b) $p \to (q \to r)$

- (3) Write the contrapositive and converse of the statement: "You sleep late if it is Saturday".
- (4) In the following, P(x, y) means "x + 2y = xy". Where x and y are integers. Determine the truth value of the statement.
 - (a) **T F** $\exists y P(x,3)$
 - (b) **T F** $\forall x \exists y P(x, y)$
 - (c) **T F** $\exists x \forall y P(x, y)$
- (5) Suppose the variable x represents students and the variable y represents courses, and A(y): y is an advanced course S(x): x is a sophomore F(x): x is a freshman T(x, y): x is taking y. Write the following statements using these predicates and any needed quantifiers.

(a) There is a course that every freshman is taking.

- (b) No freshman is a sophomore.
- (c) Some freshman is taking an advanced course.
- (d) There are at least two freshman students taking the exact same courses.
- (6) Determine whether the following argument is valid.

 $\begin{array}{l} p \to r \\ q \to r \\ \hline \neg (p \lor q) \\ \hline \vdots \neg r \end{array}$

(7) Determine whether the following argument is valid. She is a Math Major or a Computer Science Major. If she does not know discrete math, she is not a Math Major. If she knows discrete math, she is smart. She is not a Computer Science Major. Therefore, she is smart.

(8) Determine whether the rule describes a function. If your answer is no say why. (a) $f : \mathbb{N} \to \mathbb{N}$ where $f(n) = \sqrt{n}$.

- (b) $g: \mathbb{N} \to \mathbb{N}$ where g(n) = any integer > n.
- (9) Give an example of a function from \mathbb{Z} to \mathbb{N} that is both one-to-one and onto.

(10) Give an example of a function from \mathbb{Z} to \mathbb{N} that is onto but NOT one-to-one.

(11) Let $f : A \to B$. Let $B' \subset B$. Show that $f(f^{-1}(B')) \subseteq B'$. WHAT condition is needed for the containment in the other direction?